63 research outputs found

    Medical Information Representation Framework for Mobile Healthcare

    Get PDF
    In mobile healthcare, medical information are often expressed in different formats due to the local policies and regulations and the heterogeneity of the applications, systems, and the adopted Information and communication technology. This chapter describes a framework which enables medical information, in particular clinical vital signs and professional annotations, be processed, exchanged, stored and managed modularly and flexibly in a mobile, distributed and heterogeneous environment despite the diversity of the formats used to represent the information. To deal with medical information represented in multiple formats the authors adopt techniques and constructs similar to the ones used on the Internet, in particular, the authors are inspired by the constructs used in multi-media e-mail and audio-visual data streaming standards. They additionally make a distinction of the syntax for data transfer and store from the syntax for expressing medical domain concepts. In this way, they separate the concerns of what to process, exchange and store from how the information can be encoded or transcoded for transfer over the internet. The authors use an object oriented information model to express the domain concepts and their relations while briefly illustrate how framework tools can be used to encode vital sign data for exchange and store in a distributed and heterogeneous environment

    Instrumental support in the physical activity community - premilinary results

    Get PDF
    Currently, we witness the growth of ICT-mediated solutions for chronic diseases management, especially to assist and support patients in lifestyle changes in order to improve their health condition. Being physically active is one the recommended lifestyle changes for patients with chronic diseases. The challenge within those ICT-mediated solutions for physical activity support is to allow patients to manage themselves their physical activity level (PAL) and provide them with the needed social support. One of those solutions available is the use of Virtual Community (VC)

    Pressure Insoles for Gait and Balance Estimation

    Get PDF
    Stroke leads to impairment in motor ability, gait, and balance, due to brain tissue damage [1]. Clinical therapy following stroke aims at improving mobility and functional capacity. However, there is lack of objective information about subject’s performance once they are transferred home [2]. A wearable, unobtrusive system is needed to describe and compare clinical capacity and performance in a home setting. ForceShoes™ (Xsens Technologies B.V., The Netherlands) had been developed to provide holistic information about subject’s gait and balance measures, such as Extrapolated Centre of Mass (XCoM) and Dynamic Stability Margin (DSM) [3], [4]. Using these measures, a clear distinction between the capacity and performance of the subject is seen. However, this system is obtrusive and requires a long time to set up. This project addresses the need for a wearable and minimal sensing system with an unobtrusive set up. Pressure insoles are lightweight and inconspicuous, and when coupled with an Inertial Measurement Unit (IMU), several gait and balance measures can be estimated. In this study, a 1-D pressure insole system (medilogic ® insoles, T&T medilogic Medizintechnik GmbH, Germany), coupled with IMUs, is investigated for objective quantification of gait and dynamic balance measures. Although, to obtain such measures, 3D forces and moments are required. Linear regression models were used to model 3D forces/moments from the 1D plantar pressures measured from pressure insoles. The predicted forces and moments were used for estimation of XCoM and DSM. These parameters were compared with the estimations done by the forces and moments from the Force Shoes™. The regression model is tested for different walking speeds. High correlation and low differences between the estimations from predicted and measured values show that pressure insoles can indeed be used as an wearable alternative. The results will also be used in designing a wearable in-shoe system that can be used in daily life monitoring for stroke subjects. The study is a part of project 7 of NeuroCIMT, funded by the Dutch National foundation STW. REFERENCES [1] S. F. Tyson, M. Hanley, J. Chillala, A. Selley, and R. C. Tallis, “Balance disability after stroke.,” Phys. Ther., vol. 86, no. 1, pp. 30–38, 2006. [2] B. Klaassen, B.-J. F. van Beijnum, M. Weusthof, D. Hof, F. B. van Meulen, Ed Droog, H. Luinge, L. Slot, A. Tognetti, F. Lorussi, R. Paradiso, J. Held, A. Luft, J. Reenalda, C. Nikamp, J. H. Buurke, H. J. Hermens, and P. H. Veltink, “A Full Body Sensing System for Monitoring Stroke Patients in a Home Environment,” Commun. Comput. Inf. Sci., vol. 511, pp. 378–393, 2016. [3] F. B. van Meulen, D. Weenk, E. H. F. van Asseldonk, H. M. Schepers, P. H. Veltink, and J. H. Buurke, “Analysis of Balance during Functional Walking in Stroke Survivors,” PLoS One, vol. 11, no. 11, p. e0166789, Nov. 2016. [4] F. B. van Meulen, D. Weenk, J. H. Buurke, B.-J. F. van Beijnum, and P. H. Veltink, “Ambulatory assessment of walking balance after stroke using instrumented shoes,” J. Neuroeng. Rehabil., vol. 13, no. 1, p. 48, 2016. [5] A. L. Hof, M. G. J. Gazendam, and W. E. Sinke, “The condition for dynamic stability,” J. Biomech., vol. 38, no. 1, pp. 1–8, 2005

    Ambulatory Estimation of XCoM using Pressure Insoles and IMUs

    Get PDF
    Ambulatory gait assessment using minimal sensors has quite an impact for different applications requiring localised sensing. ForceShoes™ was developed as one such solution. It consists of two IMUs, and two 6DoF force and moment (F&M) sensors on each foot1. Additionally, an ultrasound system was added 2. The complete system, also referred to as Ambulatory Gait and Balance System (AGBS), is used to measure ambulatory kinematics and kinetics of the feet while walking. The AGBS has been validated against standard systems2,3. Using the measured F&M, and position estimations from IMUs, the low and high-frequency information of Center of Mass (CoM) is estimated. This was used to estimate the Extrapolated Center of Mass (XCoM)4. XCoM along with base of support provides information about stability during walking4. The unique advantage of the AGBS is its portability and ambulatory measurement when compared to standard systems. The F&M sensors in the AGBS however, are quite bulky, making it heavier and taller than normal shoes. As an alternative, using 1D pressure sensors was studied. Pressure sensors are thin and easy to slip as insoles in shoes. Therefore, they show potential in making the ambulatory system less bulky

    Initial service management architecture

    Get PDF
    This document describes D2.2 of the Internet Next Generation project. Internet Next Generation is a project performed within the context of the Gigaport programme, and is funded by many organizations within the Netherlands. The architecture that is described within this document explains how customers of a Differentiated Services (DiffServ) network can manage the service that is provided by them, by reading and modifying QoS parameters in an interactive way. Which parameters are available and which values these parameters can take, is defined in the Service Level Specification (SLS), which is part of the Service Level Agreement (SLA). The form of management in which customers can modify the behaviour of the provided service is called Customer Service Management (CSM); the idea that customers can manage the behaviour of the provided service is not only interesting in case of DiffServ, but also in cases like Mobile IP, IP security or Virtual Private Networks (VPNs). The scope of this deliverable is restricted to QoS management in a DiffServ environment; a subsequent deliverable will extend this work and address how service .management can be performed in other environments, like IntServ / RSVP. This new deliverable will also address the problem of inter domain management
    • …
    corecore